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Symmetry lowering from T$ (F43m) to Ci (Cm) at LY + p first-order phase transition of the superionic 
conductor Cu#e is described by two nonequivalent wave vectors: 

kR =2(&J) and k" = E&O). 

Four orientation variants of the rhombohedrally deformed cage sublattice are equally probable equili- 
brium structures which correspond to four rays in the star of kR. Such twinning was observed using a 
microfurnace built for the Weissenberg goniometer. Three monoclinic P-phase structure variants 
displaying together pseudorhombohedral symmetry can couple to each body cube diagonal as a cage 
distortion direction, giving a total of 12-the number of rays in the star of k". o 1991 Academic press. IIX 

Introduction 

According to the generally accepted 
model (1-3) the high-temperature su- 
perionic (Y phase of the stoichiometric cu- 
prous selenide Cu,Se consists of an immo- 
bile subsystem-the cubic cage of 
Ts (F43m) symmetry, built of four Se atoms 
in (a) and four Cu atoms in (c) posi- 
tions-and a disordered mobile cation sub- 
system of the remaining Cu atoms statisti- 
cally distributed over the cage interstitial 
sites. 

The first-order phase transition to nonsu- 
perionic p - Cu,Se (T, = 413 K) is marked 
by ordering of the mobile subsystem accom- 

I To whom correspondence should be addressed 

panied by the simultaneous deformation of 
the cage sublattice and 1.4% volume expan- 
sion (3, 4). 

The results of structural investigations of 
the room temperature /3 phase of the stoi- 
chiometric cuprous selenide Cu,Se have 
been reported in quite a number of papers 
offering several seemingly mutually incon- 
sistent structural models [see Refs. in (3)]. 
In their paper, Milat et al. (3) elucidated the 
origin of these discrepancies, and described 
the ordered P-phase structure as monoclinic 
[space group Cj (Cm)], inferring from the 
symmetry displayed in the single crystal 
Weissenberg photographs and electron dif- 
fraction (ED) patterns at room temperature. 

Three monoclinic superlattice orientation 
variants differing by +- 120” rotations around 
a threefold symmetry axis of the cubic cage 

213 0022-4596191 $3.00 
Copyright 0 1991 by Academic Press, Inc. 

All rights of reproduction in any form reserved 



214 GLADIC ET AL. 

sublattice were simultaneously present in 
the ED patterns, displaying the enhanced 
overall symmetry. Along this distinguished 
axis ([l 111,) a slight elongation of the cage 
sublattice occurred, reducing the cage sub- 
lattice symmetry from cubic Ti (F43m) to 
rhombohedral C:, (R3m) (3-5). Upon com- 
pleting the j3 --$ (Y --, /I heating and cooling 
cycle repeatedly, three analogous mono- 
clinic orientation variants were always ob- 
served, but sometimes coupled to any other 
of the four body cube diagonals as the cage 
distortion direction. 

Facing such richness of observed order- 
ing possibilities, we feel the need to clarify 
the questions arising about the possible 
number of the structure orientation variants 
that are formed upon the (Y-+ p phase transi- 
tion and their mutual relationships and 
transformations. 

Group-Theoretical Considerations 

We consider the symmetry changes in the 
transition between two phases of stoichio- 
metric cuprous selenide using the general 
group-theoretical approach within the 
framework of the Landau theory of phase 
transitions (6-8). 

The space group G of the disordered par- 
ent phase (high-temperature cu-Cu,Se) is 
Ts (F43m). The symmetric set of primitive 
translation vectors for this FCC lattice is 
given as a, = a, ($9 + &f) = a, (Oii), a2 = 
a, @Oh), a, = a, (&O) (a, being the length of 
the conventional cubic cell edge), and the 
primitive cell volume is V, = :a:. The corre- 
sponding reciprocal lattice vectors are a: = 
(2da3 (iii), a; = (2nl~,) (Iii), af = (~sT/ 
a,) (11 I). The space group is symmorphic, 
containing only pure rotational operations 
which form the point group Go = Td 
(43m), with 24 elements in five classes (9) 
shown in Fig. 1. 

For the moment we focus our attention 
only on the cage sublattice and consider sep- 

arately the reduction of the cage sublattice 
symmetry from cubic to rhombohedral upon 
the cr + p phase transition. The matrix S,, 
relating the rhombohedral cell vectors (a,, 
bR, c,) (row matrix 3 x 1) to the conven- 
tional cubic ones (a,%, a,?, a$) is deduced 
from the single crystal X-ray diffraction pat- 
terns (5): 

det ScR = g,v, = fu: = 2v, 

The reciprocal lattice vectors are -- 
at = (2~lu,) (%), b; = (2duJ (Hi), c; = 
(2duJ (Qg). 

The basic vectors of the rhombohedral 
lattice are readily expressed as linear combi- 
nations of cubic primitive vectors, aR = a2 
+ a,, b, = a, + a,, c, = a, + a2, the 
translations of the rhombohedral lattice thus 
forming the subgroup of cubic translations. 

The S,, matrix relates a symmetry opera- 
tor g of the point group Go [expressed in the 
reference frame (a& a,?, a$>] to the same 
symmetry operator h [expressed in the ref- 
erence frame (a,, bR, c,)] if the operation 
is conserved after symmetry reduction (10): 

h = S,;: g S,,. 

Using the matrices of the Ts three-dimen- 
sional representation (II) [that is, transfor- 
mation of coordinates of the (x, y, z) point 
under the rotational symmetry operations 
from (7, f2)l for g, we compute the matrices 
of h. Those h matrices that contain only 
2 1 or 0 as their h, elements represent the 
symmetry operations conserved within the 
reduced symmetry structure. Application of 
the described procedure shows that the 
point group of the rhombohedrally distorted 
cubic cage sublattice is Ho = C3u (3m). 

The space group Hof the described rhom- 
bohedral lattice is the symmorphic space 
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FIG. 1. (a) Stereographic projection of the point group Go = Td (33~). (b) Symmetry elements of the 
point group Td (43m) shown in their exact positions with respect to the regular tetrahedron inscribed 
in a cube 

group C:, (R3m), and is, as shown, the sub- 
group of the high symmetry structure space 
group T; (F43m). This fulfills the I condition 
of Landau for a second-order phase transi- 
tion (6-8). 

The irreducible representation which de- 
scribes the transition is found by inspecting 
the changes in translational symmetry. In 
this transition the primitive cell volume is 
doubled (V, = 2VJ and the doubling of 
periodicity is observed in the [ 1111, direc- 
tion (a, + b, + c, = ~~(222) = 2(a, + a2 
+ a,)). Thus, the transition corresponds to 
a representation with wave vector kR = 
(277/a,) (&) = f(ag + a; + a;) = ai + --- 
b; + c;E. As - kR = kR + (2daJ (11 I), 
and (24~~) (111) is a cubic reciprocal lattice 
vector, the IV condition of Landau (7, 8) 
for a second-order phase transition is also 
satisfied. The function exp(ikr) = exp(ir(x 
+ y + z)) (for r = x% + yj + zS) is a basis 
function for the translational symmetry op- 
erations that is symmetric with respect to 
the translations of rhombohedral structure 
and antisymmetric with respect to lost cubic 
translations. Such a change of structure de- 
scribed by a single reciprocal vector kR cor- 
responds to a single irreducible representa- 

tion of the space group G, thus satisfying 
the II condition of Landau. 

The proper symmetry group of the wave 
vector is C,, = Ho, consisting of those rota- 
tional symmetry operations of G that leave 
kR invariant (W3, [C!,, , C<,‘l, [uti, G, 
u,]}). The kR vector corresponds to the L 
symmetry point of the Brillouin zone of the 
FCC lattice and belongs to the star {kR9} 
consisting of four rays ky = (25-/a ) (iii), - -c 
k2” = (2daJ (&), ky = (2duJ (#), k4” = 
(2TlUJ <HQ>. 

The possible changes of translational 
symmetry in phase transitions associated 
with all Brillouin zone special symmetry 
points of all types of Bravais lattices are 
tabulated in (13). The type of the Bravais 
lattice obtained upon lowering the symme- 
try is determined by the star of the wave 
vector characterizing the transition and the 
number of rays involved. For the lowering 
of the FCC structure symmetry correspond- 
ing to any one out of four rays of the {kR9} 
star, a rhombohedral cell of doubled volume 
is obtained [Tables 3.1 and 3.2 in (13)] with 
primitive translation vectors equal to those 
we deduced from Weissenberg photographs 
(5) (e.g., another transition including super- 
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TABLE I 

FOR g E G,,, Hj = g-’ H,g (E.G., FOR i = I;j = l-4) 

CT.6 G,‘l 
G, c,.: 

Gx c2.x 

uYyz UYyz 

s,' s:, 

s:, s,' 

g-‘H,g = H3 

g-’ E C2H, 
E S,&‘H, 
E SkH, 

position of four rhombohedral orderings, 
that is according to all rays of the star, would 
result in a large FCC cell, with doubled cell 
edges and a cell volume eight times larger 
than that of the initial structure). 

The other wave vectors in the star are 
obtained from ky by applying to it symmetry 
operators of the group Go not conserved in 
the Ho subgroup (e.g., Eky = ky, 
C,ky = k:, C,ky = kp, C,,kk = k,R). These 
operators form a so-called variant generat- 
ing group (V.G.G.) (14), which is a group 
formed by coset representatives in the de- 
composition of Go into cosets of H,. The 
choice of coset representatives is not unique 
in this case, so that the following decompo- 
sitions are possible: 

Go = EH, + C,,H, + C,,H, 
+ C,,H, = D, A C,, 

= EH, + C,,H, + SixHo 
+ S4,‘Ho = Sf’ . C3, 

= EH, + S,,‘H, + C,,H, 
+ S&H, = S6”’ * C,, 

= EH, + S&H, + S,‘H, 
+ C,,H, = St’ . C,,. 

The number of coset representatives in a 
decomposition is equal to the index of group 
Ho in Go. Application of one of the coset 
representatives gi to the structure of the 
lower symmetry phase gives a structure of 
the space group symmetry g,Hg; ’ (Table I). 
The space groups of the four structures thus 
obtained are distinct but equivalent (1.5, 16) 
subgroups of G in the sense that their ele- 
ments differ in orientation (Fig. 2). All Hi (i 
= 1, 2, 3, 4) groups are crystallographically 
equivalent and related by symmetry opera- 
tions of Go-they are the four possible ori- 
entation (twin) variants (14, 16) or coherent 
domains (16) of the ordered structure. (It 
can be easily checked in Table I that D,, 
St), Sf), and St) generate the same set of 
variants, although by using different sym- 
metry operations of Go .) The appearance of 
a specific orientation variant corresponds to 
the transition with the appropriate single ray 
of the {kR9} star involved. 

These four variants represent the four 
available choices of one cubic threefold axis 
as the direction of the uniaxial distortion (3, 
4) of the cubic cage sublattice (compare Fig. 
2 with Fig. 1.). 

The basis functions for the irreducible 
representation (it-r. rep.) of the entire space 
group G associated with the vector kR are 



fi PHASE OF STOICHIOMETRIC CUPROUS SELENIDE 217 

FIG. 2. Stereographic projection of the subgroup Ho - Cj, (3~) showing exactly the four possible 
orientations with respect to the Go group Td (33~2) (compare with Fig. la). 

obtained by subjecting the mentioned basis 
function for the translational symmetry op- 
erations to all rotational symmetry opera- 
tions of the group. The elements of the point 
group of the wave vector transform it ac- 
cording to the totally symmetric small rep. 
of the group of the wave vector kf = (2~/ 
a,) (ttb) [one-dimensional loaded rep. 2’ of 
the wave vector k, of the T$ space group 
(12)]. The remaining elements of the point 
group Td transform this basis function into 
one of the basis functions associated with 
the wave vectors of the same star [exp(ir(x 
+ y + z)), exp(irr(x - y - z)), exp(ir(-x 
+ y - z)), exp(ir( -x - y + z)] corre- 
sponding to wave vectors kf’, k:, ky, kR 43 
respectively), The matrices, describing the 
way in which this set of four basis functions 
is transformed into different linear combina- 
tions of themselves under application of an 
arbitrary element of the space group G, are 
the matrices of the irr. rep. of group G asso- 
ciated with the wave vector kR. The dimen- 
sion of this representation is equal to the 
number of wave vectors in the star-that is, 
to the number of basis functions, which are 
themselves the components of the order pa- 
rameter corresponding to the transition. 

We have checked that the I, II, and IV 
Landau conditions for the second-order 
phase transition are fulfilled in this case. If 
the irr. rep. found for G satisfies the III 
Landau condition (concerning nonexistence 

of the third-order invariants in expansion of 
Gibbs free energy as power series in order- 
parameter components) the equilibrium 
structures can be obtained by extremization 
and minimization of the symmetry invariant 
expansion. 

A cubic invariant that remains unchanged 
under all symmetry operations of space 
group G is generally constructed of products 
made of any three basis functions. For such 
a product to be invariant under the transla- 
tions of G, the sum of the three correspond- 
ing wave vectors from the four-ray star 
should be equal to a reciprocal lattice vector 
of the high symmetry structure (should 
transform as the identical representation). 
We are easily convinced that in this case 
((kR9} star) third-order invariants cannot ex- 
ist and thus all the Landau conditions for a 
continuous phase transition are met. 

Having experimentally determined the 
high- and low-symmetry structures of the 
cage sublattice of stoichiometric cuprous 
selenide and comparing them with Tables 
3.1 and 3.2 from (13), we have avoided the 
tedious extremization and minimization of 
the symmetry invariant expansion of Gibbs 
free energy. The observed structure obvi- 
ously corresponds to a solution in which one 
of the order parameter components, 9; = I 
(i = 1, 2, 3,4) and the other three are equal 
to zero (only one ray of the star {kR9} is 
involved). 
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The value of the free energy in this mini- 
mum is independent of the actual choice of 
the nonzero vi component. Provided that 
the thermodynamic variables upon which 
the expansion coefficients depend (pres- 
sure, temperature, etc.) are isotropic, all ori- 
entation variants can arise from the same 
phase transition with equal probabilities. 

The number of translation variants T (14) 
for a given rotation variant is given by the 
number of lattice nodes of the disordered (Y- 
phase structure within a primitive unit cell 
of the ordered P-phase structure, and can be 
obtained as the quotient of primitive unit 
cell volumes of the ordered (V,) and disor- 
dered (V) phase, i.e., T = V,lV. In our 
case, V, = 2V,, so that within each of the 
four possible orientation variants, two 
translation variants are expected to occur. 

Let us now consider the ordered p - 
Cu,Se phase in its entirety-the ordered 
mobile cation subsystem within the de- 
formed cage sublattice. The structure of 
stoichiometric cuprous selenide below 413 
K is described as monoclinic (3) in terms of 
the double layer monochnic supercell de- 
noted by m, as well as the two four-layer 
“block cells” (M’, M”). 

The transformation matrices are ((ai, bi, 
CJ = (a,, , ac2, a,,) . Sci; i = m, M’, M’). 

det S,, = 3, V, = 3az = 12V, 

det ScM = 6, V,, = 6a; = 24V, 

L 
det ScM = 6: V, = 6a: = 24V,. 

We apply the same procedure as before 
to calculate the j matrices ( ji = SC;’ gs,,; 

i = m, M’, M”; g E Go) and check for the 
conserved symmetry elements within the 
p-phase structure. The obtained j matrices 
disclose that only two symmetry elements 
remain-the identity E and the oY mirror 
plane, except within the m reference frame 
where two extra symmetry elements arise, 
recognized as Ur, = u,,I and uXZ, contra- 
dicting the reported space group C: (Cm). 
Careful reexamination of the original (3, 5) 
Weissenberg photographs reveals that the 
relationship between the monoclinic su- 
percell and the cubic subcell can be de- 
scribed by the matrix 

S cm' = [ 4 -$ 1 1 -7 0: 3 1 , det S,,,,, = 3. 

Within this chosen m’ reference frame, only 
E and cry are conserved, confirming the 
C,(m) point group symmetry. 

The basis vectors of all these monoclinic 
lattices can be easily expressed as linear 
combinations of cubic primitive vectors 
with integral coefficients and thus the trans- 
lations are a subgroup of translations of the 
cubic disordered structure. 

As already shown, the point group of the 
ordered phase, denoted as Jo, is C,r(m), 
which is a subgroup of G. Thus, the space 
group of the low-temperature stoichiometric 
copper selenide meets the group-subgroup 
I condition of Landau. 

The basis functions of the representation 
with kR = (2rla,) (&) are also invariant 
for monoclinic translations, but if they were 
used for describing the low-temperature 
structure, its symmetry would be higher 
than actually observed. 

Besides a doubling of the periodicity in 
the [ill], direction, the oscillation photo- 
graphs taken in /3-Cu,Se phase reveal [weak 
spot layer lines (3)] a tripling of the periodic- 
ity along the cubic [ilO], direction [b,,,, = 
3(a, - a,)]. This corresponds to the wave 
vector km = (2nla,) (GO) = p(a*, - a*,) = 
b&,,. , with p = Q. This k point is not a 
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special symmetry point in the Brillouin zone 
and could lie anywhere along the line be- 
tween the I and K points, retaining the same 
symmetry (the value of p need not by rea- 
sons of symmetry be precisely Q). It does 
not satisfy the IV condition of Landau (-km 
= k” + (27riuJ ($10)). A second-order tran- 
sition is still possible, but with the resulting 
state of lower symmetry that could not be 
described by a three-dimensional space 
group (8), that is, with loss of the three- 
dimensional periodicity of the lattice. 

The function exp(ik”r) = exp(ifr( --x + 
y)) is a basis function for the translational 
symmetry operations. The basic transla- 
tions of monoclinic lattices leave it un- 
changed, while the lost translations of cubic 
structure multiply it by the factor exp(+i(pl 
3)). 

The group of the wave vector is C,,(m). 
The star contains 12 vectors: kT = (25~ia,) 
&O>, k; = (2~rlaJ (%O), ky = (2d3) @OS), 
ky = (2daJ @Of), k? = (27rla,) (O$$), k;: = 
(27rlaJ (O#), k;” = -k;“, k? = - kS”, k,” = 
-k,“, k’& = -ky, k;; = -kr, k;; = 
- kr , (since kr and - k:i differ by a vector 
that is not a cubic reciprocal lattice vector). 

All the wave vectors in the star can be 
obtained from ky as a result of action of 
rotational symmetry operators of G not con- 
served in .I (Ek;” = ky, C,,ky = ky , 
C,;k;” - ky, C’ - 3,2k’,” = ky, C,;kT = k;“, 
C3.j k;” = k;:, C,,kT; = kf , C,k;” = kc, 
C:,,k;” = k,“, C&k;” = kg”,, C&k;’ = k’;l, 
C;: k;” = k;n2) which form the point group 
T(23) (variant generating group). 

We can represent Go = Td as the semidir- 
ect product T, = TA C,, , the decomposition 
into left cosets of Jo (= {[El, [Us,,]}) being 

Go = EJo + C,,J, + C&J, + C,,J, 
+ C:,, Jo + C:,, Jo + C:,, Jo + C:,dJo 

+ C;; Jo + C;; Jo + C;; J, 
+ C,;J,‘= TAC,. 

Applying the coset representatives gi E T 
to the structure of the low-symmetry mono- 

clinic phase gives 12 structures of symmetry 
giJg; ’ (Table II). The monoclinic point 
group Jo can adopt six different orientations 
within the point group Td (listed exactly with 
respect to the symmetry elements of Td): 

but each Jj (i = 1-6) occurs twice, associ- 
ated with wave vectors kr (Ji) and - ky = 
ky+6 (JT = Ji+b). Reexamination of Fig. 2 
shows that the point groups of each of the 
four rhombohedral orientation variants Hi (i 
= l-4) can be formed by taking together 
the symmetry operations of the appropriate 
three monoclinic orientation variants which 
differ by _+ 120” rotations around a threefold 
axis of the cubic cage. Indeed, if we con- 
struct the possible sums of three vectors 
from the 12-ray star of k” (guided by the 
correspondence of ky’s and Jj’s in Fig. 2 and 
including different signs), we arrive at eight 
combinations summing up to wave vectors 
proportional to the rays of the star of kR: 

?(ky + ky + k,“) m ?ky + H, 

?(ky + ky + k,“) m Tk4” 3 H2 

+(k; - k;” + k,“)K TkF+H3 

+(ky - kr + ky) J; ‘ky+ H4. 

The point group of the resulting wave vec- 
tors is C,, . This means that three simultane- 
ously observed (3) monoclinic orientation 
variants mutually related by rotations 
around the third-order cubic axis contribute 
to the diffraction pattern displaying the 
pseudorhombohedral symmetry of the 
structure domain coupled to one of four pos- 
sible cage distortion directions. 
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TABLE II 

FOR gEG,, Jj = g-‘J,g (E.G., FOR i = 1;j = l-6) 

The point group of the wave vector k” is 
equal to the point group of the monoclinic 
structure, so that the basis functions are 
symmetric under the rotational symmetry 
operations and transform as the totally 
symmetric small rep. associated with the 
star of k". The irr. rep. of the entire space 
group G is 12-dimensional and is essentially 
real since the set of base functions consists 
of exp($&r-x + y)), exp(%i?r(x + y)), exp 
(Hh(x - z)), exp(%r(x + z)), exp(%r(y - 
z)), exp(&r (y + z)), and their complex 
conjugates. 

We still have to consider the possible 
existence of cubic invariants in the expan- 
sion of free energy. Each of the 12 wave 
vectors in the star is related to two others 
by rotations for +120” around the cubic 
third-order axis (monoclinic c* direction). 
Such three-coplanar wave vectors perpen- 
dicular to c&,,, sum up exactly to zero in 
eight combinations (denoted by ray num- 
bers, using the convention i* = i + 6): 

1+3+5*=1*+3*+5=1+4+6* 
=1*+4*+6=2*+3+6=2+3* 
+6*=2*+4+5=2+4*+5*=0. 

The corresponding products of basis func- 
tions form a third-order invariant, the exis- 
tence of which does not allow the phase 
transition to be of the second order. 

In order to determine the number of trans- 
lation variants within a given monoclinic ori- 
entation variant, we make use of the trans- 
formation matrices relating the base vectors 
of the ordered and disordered structure, 
thus obtaining T, = 6, T, = 12. 

Experimental 

Microfurnace for the 
Weissenberg Goniometer 

Such a variety of intrinsically possible 
structural complexities led us to developing 
a heating device for a Weissenberg camera 
that would permit single-crystal X-ray anal- 
ysis to be carried out as a function of temper- 
ature. Having at our disposal a commercial 
Weissenberg camera (“Siemens,” film di- 
ameter 4 57.3 mm) suitable for recording 
single-crystal diffraction data on rotation, 
oscillation, and equi-inclination Weissen- 
berg photographs, we were naturally led to 
select a heating device designed to allow 
the full usage of these instrument facilities, 
extending its applicability to cover the entire 
temperature range of interest. Bearing in 
mind some of the requirements to be ful- 
filled, namely, to ensure accurate and con- 
stant crystal settings about the rotation axis, 
to avoid as much as possible screening of 
the direct and diffracted beams, and to pro- 
vide for precise temperature measurement 
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FIG. 3. Microfurnace mounted on Weissenberg goniometer. 

and its long-term stability, we followed, 
with slight modifications, the microfurnace 
design given by Tuinstra and Fraase Storm 
(17). 

The microfurnace with the sample 
mounted on it is attached to the custom- 
made sledge, replacing the original one on 
a standard goniometer head, thus enabling 
vertical, lateral, and rotational adjustments 
of the sample position (Fig. 3). The single- 
crystal or powder specimen is sealed in an 
evacuated quartz capillary inserted axially 
into the metal tube in the furnace center 
containing the temperature sensor [an 
oxidation-resistant platinel (18) alloy ther- 
mocouple]. The sample is heated by a hot 
air jet enclosed coaxially with a cylindrical 
cool air stream, the air flow being supplied 
by a pair of aquarium pumps (19) at a con- 
stant rate of 4 liters min- ‘. The voltage from 
the thermocouple measuring the hot jet tem- 
perature is fed to an electronic temperature 

regulator (20), where it is amplified and com- 
pared with a preset reference voltage. The 
power output to the Kanthal wire heater is 
varied proportionally to the detected tem- 
perature deviation from the selected value, 
giving a thermal stability of better than 
k0.25 K. 

Using another thermocouple, we investi- 
gated the axial temperature distribution, 
showing the temperature gradient ranging 
from 0.5 to 5 K mm-’ along the axis. The 
samples are intentionally not placed in the 
smallest gradient region, as it would pro- 
duce obscuring of almost half of an oscilla- 
tion photograph by the muzzle of the fur- 
nace . A compromise of having a 
temperature gradient of at most 4 K mm-’ 
at 600 K (probably smaller across a typical 
0.5-mm-long single crystal, due to thermal 
equalization) and only one-third of an oscil- 
lation photograph screened out has been 
considered acceptable. 
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The absolute value of temperature was 
checked in situ by mesuring the lattice con- 
stant from silver powder diffraction patterns 
at different temperatures. The sample tem- 
perature deviates reproducibly for up to 5% 
of the value measured with the sensor ther- 
mocouple in the operation range from room 
temperature to 900 K. 

As the hot air is let out axially through a 
hole made in the layer-line screen holder, 
no film heating was observed even after the 
48-hr exposures at elevated temperatures. 
The film holder was made of two semicylin- 
drical halves, permitting the film exchange 
as well as any necessary readjustments of 
the crystal setting without disturbing the 
sample temperature. 

Sample Preparation 

The compound preparation was described 
earlier by VuCic and Ogorelec (21). Suitable 
single-crystal specimens, fitting the quartz 
capillary sample holder, were cleaved off 
from polycrystalline ingots obtained by the 
Bridgeman method. The crystal habit of the 
samples closely resembles that shown in 
Fig. 1. of Ref. (3). 

Results and Discussion 

We followed the structural changes of 
stoichiometric Cu,Se macroscopic single 
crystals, taking the zero- and higher-layer 
Weissenberg photographs in the tempera- 
ture interval from 430 to 300 K, that is, 
above and below the ordering CY 4 p transi- 
tion temperature (413 K). 

The high-temperature a-phase photo- 
graphs displayed the well-known cubic pat- 
tern (Fig. 4a). After the samples were cooled 
through the ordering Q! + p transition, the 
superstructural spots, indicating the dou- 
bling of periodicity along the [ 1111, direc- 
tion, appeared. Some samples showed this 
feature dominantly along only one of the 
(11 l), axes, while for the others it was 
equally well pronounced along both (11 l), 

axes, which can be seen within a single 
Weissenberg photograph of a crystal rotat- 
ing around the [ilO], axis (Fig. 4b). 

As already mentioned, the choice of any 
of body cube diagonals as the direction of 
the rhombohedral deformation upon the CY 
+ /3 transition would be equally probable 
if there were no external influences. But, 
during the phase transition, the real crystals 
are subject to different anisotropic fields and 
temperature gradients due to imperfections 
in crucible shape and nonuniform heating. 
These could result in singling out some pre- 
ferred orientations for the cage distortion to 
occur upon the cy 3 p transition. 

In the oscillation photographs taken just 
below the transition temperature, the weak 
spot higher layer lines (indicating the tripled 
periodicity along the [ilO], oscillation axis) 
confirm the simultaneous onset of structure 
changes described by two nonequivalent 
wave vectors, km and k”. As it is not possi- 
ble to construct a single wave vector that 
would describe the transition to the ob- 
served P-phase structure [the (kR ? k”) 
wave vector would have lower proper sym- 
metry (3 {E}) than observed], the transition 
does not correspond to a single irreducible 
representation. Thus, it violates the II con- 
dition of Landau, in accordance with the 
experimentally observed first-order charac- 
ter of the phase transition (3, 4). 

A gain of further information about the 
monoclinic superlattice orientation variants 
was prohibited by the pronounced weaken- 
ing of already weak spots of the higher layer 
lines due to the absorption of the quartz 
capillary enclosing the tiny single crystal. 

Summary 

Starting from the experimental findings 
about the rather intricate structure of the p 
phase of stoichiometric cuprous selenide, 
we considered separately two major compo- 
nents of the symmetry lowering at the (Y + 
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FIG. 4. Sections of Weissenberg photographs of a Cu,Se single crystal displaying the (a? + a;. a?) 
plane (cubic notation): (a) in the high-temperature cy phase: (b) in the p phase with two orientation 
variants visible, developed along [ll I]: and [ 1 Ii];. 

p phase transition: the rhombohedral defor- 
mation of the cage sublattice and the order- 
ing of the mobile cation subsystem. 

Having identified the wave vector that de- 
scribes the cage sublattice symmetry reduc- 
tion, we confirmed by applying the Landau 
theory of phase transitions that the rhombo- 
hedral elongation of the cage along a body 
cube diagonal observed in the /3 phase is 
indeed the equilibrium structure. It is ex- 
pected to appear in four equivalent and 
equally probable orientation variants corre- 
sponding to four rays in the star of the wave 
vector. The simultaneous presence of these 
variants upon the cy -+ p transition was de- 
tected using a microfurnace attachment for 
the Weissenberg goniometer. 

Application of group-theoretical methods 

to the other change of periodicity character- 
istics for the CY * /3 first-order phase transi- 
tion leads to the possibility of 12 monoclinic 
orientation twins corresponding to 12 rays 
in the star of the appropriate wave vector. 
Their simultaneous appearance in groups of 
three coupled to the cage rhombohedral dis- 
tortion direction seems quite natural, con- 
sidering the pseudorhombohedral symme- 
try such a set displays. The existence of 
these variants was deduced from ED pat- 
terns in (3). The diffuseness of the nearly 
continuous weak spot rows, easily noted in 
those patterns, suggests the presence of a 
stacking disorder of monoclinic variants 
along the pronounced [ 11 I], direction. This, 
as well as the limited spatial extending of a 
single domain, is clearly visible in the high- 
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resolution lattice image of Cu,Se in (22). 
The investigation of their probable long- 
range ordering as a function of temperature 
and time suggests more subtle experimental 
techniques. 

The types of ordering discussed here are 
not uncommon in FCC materials, particu- 
larly those that can exhibit nonstoichiome- 
try. Our attention has been drawn to the 
striking correspondence between the wave 
vectors relevant for symmetry lowering in 
copper selenide and those found in the early 
transition-metal sulfides with the NaCl-type 
structure [for example, Zr,-$3, see (231. 
The kR wave vector is not to be unexpected, 
as it corresponds to one of the three special 
symmetry points of the Brillouin zone. The 
k, vector (not satisfying the IV condition of 
Landau) could give rise to incommensurate 
structure, but this was not discernable from 
available experimental data. 
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